
Architecture recovery of Apache 1.3 — A case study

Bernhard Gröne, Andreas Knöpfel, Rudolf Kugel

Hasso Plattner Institute for Software Systems Engineering
P.O.Box 900460, D–14440 Potsdam, Germany

E-mail: {groene, knoepfel, kugel}@hpi.uni-potsdam.de

Abstract

This document presents experiences from a course in
which the authors taught students a way to understand and
model software systems and share their knowledge about
them. The real–life system examined in the course was the
World Wide Web (WWW) and the Apache HTTP Server. The
conceptual architecture of the system was modeled using
the Fundamental Modeling Concepts (FMC) which turned
out to be well suited for sharing knowledge about both con-
cepts and details of the system. Excerpts of the model are
presented in this document.

Keywords: Architecture recovery, Conceptual Architec-
ture View, System Modeling, Fundamental Modeling
Concepts

1. Introduction

Understanding existing software is an everyday task in
software engineering. You often need to evaluate software
products, e.g. if you join in or take over their development
or if you just want to use them in your own project. If the
complexity of a software product reaches a certain level,
there is a need for division of labor requiring communica-
tion and for a systematic approach.

The curriculum for software systems engineering at the
Hasso–Plattner–Institute (HPI) provides a practical semi-
nar in the 4th semester, where students examine a real–life
software product closely, acquire knowledge about it and
present their results to the group. In 2001, the students ex-
amined the Apache 1.3 HTTP server.

Although everyone was familiar with the World Wide
Web, getting a detailed conceptual architecture model of the
system (including subjects like HTTP, DNS, Virtual Hosts
and so on) took half of the semester. After that, the students
had to examine the implementation of Apache. The concep-
tual architecture model of Apache developed in the course
turned out to be very important for explaining both concepts

and implementation design decisions. It was modeled using
Fundamental Modeling Concepts (FMC, see section 2.2).

After the seminar, the conceptual architecture model of
Apache was used for several presentations in industry. The
material of the seminar has also been prepared for display
on a web site and can be found at [4].

Section 2 of this document describes the structure of
the seminar. An excerpt of the conceptual architecture of
Apache is presented in section 3. In the conclusion, the au-
thors present their experience with the seminar and with the
use of FMC.

2. The Seminar

The idea behind the seminar was to teach 60 students a
method of mastering the complexity of a software product.
The students needed to understand the Apache 1.3 HTTP
server and its implementation. We have chosen Apache be-
cause it is a real–life software product which is used all over
the world, is actively developed, provides open sources and
shows a certain level of complexity. The source code of
Apache 1.3.17 consists of about 100.000 lines of C code,
making it a rather small productive software product.

The authors assigned 32 topics related to Apache to
the students who had to gather information themselves and
present and discuss the results in their group. An examina-
tion at the end of the seminar was intended to check if the
students could explain concepts and pieces of source code
of Apache.

One result of the seminar — apart from the student’s ex-
periences and their presentation slides — is a set of dia-
grams and explanatory texts describing various aspects of
Apache and its environment. These can be obtained from
[4].

2.1. Sources of Information

The first task in the seminar was to find sources of in-
formation about Apache. Starting from the Apache HTTP
Server Project Web site [1], it is easy to find information

about usage and administration of Apache; look at [2] as a
good example. Finding information about the implementa-
tion of Apache aside from the source code was much harder.
The best source of information was “Writing Apache Mod-
ules with Perl and C” [7]. This book describes the Apache
Module API, a plug–in mechanism for server extensions,
and provides the information needed to create new mod-
ules. It contains a description of the Apache API and the
Request–Response–Loop, which is the main HTTP server
loop where most module handlers are called from.

The remaining source of information about the imple-
mentation of Apache was the source code distribution of
Apache itself. Aside from the partly documented source
code, it also contains documentation of various details, but
provides little information about the conceptual architec-
ture.

The Apache source code distribution provides one source
base for many system platforms and makes excessive use of
preprocessor directives like#ifdef s and macros. When
reading the code, you must always check if it will be com-
piled or skipped by the preprocessor and if a macro is re-
placed by code or a by a comment. For the seminar, we
decided to study the code for the Linux platform only.

2.2. Tools and Notation

In the seminar, a simple tool was used for the analysis
of the source code which transformed the C source code
into a set of syntax–highlighted and hyper–linked HTML
files. Now the students could navigate in the source code
from any function call to its definition with a web browser.
The tool has been inspired by doxygen [8] and takes care of
the excessive use of preprocessor statements in the source
distribution of Apache 1.3.

Further code analysis tools were not used for two rea-
sons:

• An important amount of information needed for the
conceptual architecture is not existent in the code and
therefore cannot be extracted by a tool.

• Students have to learn how to structure and categorize
code and how to extract information for different as-
pects like multitasking or communication. After hav-
ing learned to do this successfully for a small prod-
uct like Apache, they can use tools to examine bigger
products.

In the curriculum, HPI students are taught the fundamen-
tal modeling concepts (FMC, see [6] for an introduction)
during semester 1 – 3. They provide a simple but powerful
terminology and notation to model both the conceptual and
execution architecture view (see [9], [10] and [5]).

2.3. A systematic approach to analyzing and under-
standing a software product

The structure of the seminar reflects the steps you have
to take for a systematic approach to analyzing a software
product:

1. Defining the purpose of the analysis

2. Gathering domain knowledge and understanding the
system

3. Understanding the function and handling of the soft-
ware product

4. Understanding the implementation of the product (if
sources are available)

In the seminar, the students had to share their knowledge
with the group, so comprehensive diagrams and an adequate
presentation played an important role. Finding and formu-
lating the topics was a task the authors did prior to the sem-
inar. In real–life situations, however, you usually have to
start by defining the topics yourself.

In the following, the detailed steps and some of the topics
given to the students can be found:

1. Defining the purpose of the analysis The level of de-
tail of the following steps depend on the target of the analy-
sis.

This goal for the seminar was: The students should be
able to explain key concepts of the system in general, of
Apache and its implementation. For the latter they had to
be able to explain some parts of source code of the server
runtime (see section 3).

2. Gathering domain knowledge and understanding the
system First make a list of information sources and a glos-
sary for domain terms. You will add more items or correct
them in the following phases. Then look at the system con-
sisting of the software product and its environment. Often
you need a lot of domain knowledge to understand the pur-
pose and the behavior of the product. It is crucial to gather
information about the communication partners, the proto-
cols used for their communication and the structures of ex-
ternal data sources.

The students had to understand and model the role
of HTTP clients and servers, TCP/IP, DNS, the protocol
HTTP/1.1, authentication, SSL, scripting, cookies, proxy,
caching, virtual hosts and so on. A big help in understand-
ing the protocols was to “talk” HTTP to the server with
telnet to examine the response of an HTTP server and
to implement and alter a simple HTTP server as shown in
figure 2 to learn what a browser is able to do. The result was
a model of the conceptual architecture of the entire system.

3. Understanding the function and handling of the soft-
ware product Here you learn how to install, configure
and administrate the product, about its features and its ex-
tendibility via APIs. This knowledge leads to a conceptual
architecture model of the internal structure of the software
product which might not be identical to the real runtime
structure, but is sufficient to explain its behavior. To get in-
formation about details not clarified in the documentation,
you either have to experiment with the product or study its
implementation, if available.

The students had to compile, install and configure
Apache and present the module API which reveals a lot of
information about the internal structure of Apache. Further-
more they had to implement a small module to extend the
behavior of Apache. This led to a conceptual architecture
model of Apache which can be used to explain its features.

4. Understanding the implementation of the software
product If the source code is available, you should make
a table of contents of all files of the source distribution,
classify them and decide which of them contain probably
important information. The source distribution of Apache
1.3.17 comes in 780 files in 44 subdirectories, 235 files con-
tain C source code. Only a handful of them are essential for
understanding the runtime system structure. The structure
of the code usually differs from the conceptual architecture,
because it has to respect aspects like maintainability, divi-
sion of labor between many developers, changeability and
many more.

Using the conceptual architecture model of step 3 as a
starting point, you can study the implementation to verify
and enrich the model and dive into detail where you need
more information about the product (this depends strongly
on the purpose of the analysis). Often you need addi-
tional information about library functions or operating sys-
tem calls. The conceptual architecture model serves as a
map where you can find the proper place for implementation
details and fill the white areas with information extracted
from the code. Additionally, the model is an excellent basis
for communication about the code.

The students examined how Apache starts up and shuts
down, where and how it handles multitasking and concur-
rency. They looked at its resource management, the plugin
mechanism (Apache Modules), the Apache API, the main
server loops, how it collects the configuration information
in order to process a request, and the dynamic loading of
extension modules. In addition, they had to study operat-
ing system calls for process handling (fork, exec), signals,
sockets, pipes, memory management and so on.

According to the goal defined for the seminar, the stu-
dents studied only a small but important part of the code.
They focused on understanding the server runtime, i.e.
start–up and shutdown of the server, the maintenance loops

of the master server and the request–response loop of the
Child Servers, where most module handlers are called from.
The CGI module served as a prototype for all other mod-
ules.

3. The conceptual Architecture of Apache

3.1. HTTP servers in general

In general, an HTTP server waits for requests and an-
swers them according to the Hypertext Transfer Protocol.
A client (usually a web browser) requests a resource (usu-
ally an HTML document or an image). The server exam-
ines the request and maps the resource identifier to a file or
forwards the request to a program which then produces the
requested data. Finally, the server sends the response back
to the client.

Since HTTP is a stateless protocol, the server doesn’t
have to keep any session information for subsequent re-
quests.

Browser

R

HTTP Server

Files

HTTP

Browser Browser

R R

...

...

Editor Editor

Figure 1. System structure of an HTTP Server
and its environment (block diagram)

The general idea behind the World Wide Web is a sys-
tem where authors provide information for readers. They
use the technical infrastructure provided by HTTP servers,
browsers and a network. Figure 1 shows a compositional
structure1 of the system in general. It shows one HTTP

1Notation of a compositional structure (block) diagram: Rectangles
symbolize active components (agents) like people (symbolized by a stick
man), machines or processes, big circles and ellipses stand for passive
components like storages and small circles on a line depict channels be-
tween agents.

Initialization

Request port 80 as
server port

wait for connection
request (port 80)

establish connection,
read request

translate URI into file
name

find file and
determine its type

send
response header

send file

close connection

send
error message

Error:
Illegal Request

Error:
File not found

HTTP Method

GETelse not supported

File not found

Figure 2. Behavior of a single–tasking HTTP
server (Petri net)

server and many clients using the communication protocol
HTTP. A client consists of a Web Browser and a human be-
ing controlling it. The server can read files from a storage
(file system or database) and send them in response to a re-
quest to a browser.

The behavior of a single–tasking HTTP Server is shown
in figure 2. After the initialization, the server enters the
request–response loop. For simplicity, only the response to
a GET request is shown.

It is very easy to implement an HTTP server like that
with 100 lines of code [4]. An HTTP server suitable for
daily use, however, must provide additional features like
serving multiple clients simultaneously, security, robust-
ness, scripting and many more.

3.2. Conceptual Architecture of Apache

In this section, the focus lies on the conceptual architec-
ture of Apache, its behavior during startup, shutdown and
on the server maintenance loop. Further details of topics
like the request processing or the module structure can be
found in [4].

The conceptual architecture shown below represents a
general pattern for stateless multitasking network servers.

The system structure at runtime Figure 3 shows a snap-
shot of the runtime structure of Apache after initialization.
The environment is similar to the system view in figure 1.

Files

Apache HTTP Server

scoreboard

TCP/IP Communication ServiceSockets

Master
Server

Child Server N

server status generation ...

Child Server 1

Files

local
config. data
(.htacess)

Docu-
ments

R

Admin

R

Scripts

global
config.

data

generation

Signals:
- stop (TERM)
- restart (HUP)
- graceful restart
 (USR1)

R

R

Signals: stop now /
later (HUP/USR1)

client client

RHTTP

con-
fig.

con-
fig.

con-
fig.

...

Figure 3. System structure of Apache at run-
time (block diagram).

The administrator controls the HTTP server via signals and
via configuration files. The files are partitioned into the
documents (HTML files, images, applets, etc.), server–side
scripts and local configuration data (.htaccess files2).

The inner structure of Apache shows three types of
agents: The Master Server process, the TCP/IP Commu-
nication Service and a variable number of Child Server pro-
cesses.

• The Child Servers are responsible for serving HTTP
requests. They run the request–response loop similar
to figure 2.

• The TCP/IP Communication Service is part of the op-
erating system and manages access to TCP ports and
connections. It can receive connection requests simul-
taneously and wake up processes waiting for a request.

• The task of the Master Server is to create and control
the Child Servers and to act as the representative of the

2An .htaccess configuration file is stored in a document directory and
can be used to apply a special configuration — usually access restriction
— locally to the directory and its subdirectories. In contrast to the global
configuration, one doesn’t need administrator privileges to change a local
configuration.

Apache Server towards the Administrator. It also reads
and processes the configuration data and gives a copy
of it to every Child Server during creation.

The Master Server must guarantee that there are always
enough idle Child Servers ready to process incoming re-
quests. It therefore needs to know about the state of each
Child Server. Therefore it sets up the so–called scoreboard
inside a shared memory area where each Child Server has
to refresh its current state.

Behavior of the Apache Server and its components
Figure 4 shows the general behavior of Apache concerning
start–up, shutdown and the most important loops3.

After starting Apache, only one process exists. This pro-
cess does the first–time initialization, reads the configura-
tion and then detaches itself from the shell. This results in
the creation of a new process that will become the Master
Server shown in figure 3.

The Master Server enters therestart loopand performs
the master initialization. As this is the first time this loop is
run, it executes the right branch in figure 4 (non–graceful):
After reading the configuration for the new generation of
Child Servers, it sets up a new scoreboard, starts as many
new Child Server processes as defined in the configuration
and adds an entry for each of them in the scoreboard. As
the Master Server process uses thefork() system call to
create a Child Server, each of them gets its own copy of
the configuration data — this is modeled as small storages
below each Child Server in figure 3.

Simultaneously, every Child Server now enters its
request–response loopand starts waiting for a request. The
keep–alive loopis a sub–loop of the request–response loop
and enables the reuse of an existing TCP connection for
subsequent requests from the same client4. As long as a
Child Server runs the keep–alive loop, it can only handle
requests coming from that connection! Therefore it leaves
the keep–alive loop after a certain time of inactivity, usually
15 seconds.

In the meantime the Master Server enters themaster
server loopto control and maintain the Child Servers. It has
to keep the number of Child Servers within a given range,
and whenever a Child Server dies, it has to replace it with
a new copy. The Master Server must guarantee that there
are always enough idle Child Servers ready to handle a new

3The dotted lines serve as graphical comments to indicate the creation
of a Child Server process resulting in a new petri net for the new Child
Server. This modeling decision was made to address the problem of struc-
ture variance in petri nets.

4This is called “persistent connection” in HTTP/1.1 [3] and results from
the fact that an HTML file is supplemented by images, style sheets or ap-
plets needed for presentation. The browser requests these files immediately
after receiving and parsing the HTML file. It would be a waste of resources
if it had to establish a new TCP connection for every request.

request, but it must avoid a waste of resources by keeping
too many idle Child Servers.

Whenever the Administrator forces a restart or shutdown
of the Apache Server, the Master Server kills the Child
Servers and either enters therestart loopagain or cleans
up and exits.

The communication between Master and Child Server is
done via signals and via the scoreboard — see figure 3.

A graceful restartavoids the interruption of the handling
of pending requests that occurs when a normal restart is ini-
tiated. In this case, the Master Server sends a special sig-
nal to the Child Servers to indicate that only idle servers
should exit while the busy ones can go on and finish their
job. The Master Server reads the new configuration and
enters the master server loop directly without starting new
Child Servers or cleaning up the scoreboard (the left branch
of the master initialization in figure 4). Instead, it replaces
the Child Servers that have just exited after receiving the
signal, and adjusts their number in case the allowed range
has been changed in the new configuration.

After handling a request, a Child Server checks in the
scoreboard if its own generation matches the current gener-
ation, see figure 3 below. If not, it exits and gets replaced
with a new Child Server by the Master Server.

The runtime architecture presented above guarantees
quick responses to requests, because there is always a pool
of idle, fully configured server processes ready to handle
incoming requests.

3.3. Apache 2

The Apache Group has been developing Apache 2 for
several years now. It is a rewrite of the Apache Server
avoiding the source fragmentation caused by the excessive
use of preprocessor directives (#ifdefs and macros) in
Apache 1. The new Apache provides a better code structure,
an extended module interface and a universal server API
called Apache Portable Runtime (APR). The Multiprocess-
ing Modules (MPM) provide a flexible way to handle mul-
titasking dependent on operating systems and performance
requirements. Now it’s easier to integrate a new platform
and to use a combination of processes and threads on the
Unix platform.

The Preforking MPMprovides the same conceptual ar-
chitecture as Apache 1.3, shown in figure 3 and 4, while the
mapping to source code files has changed. The following
selection of Multiprocessing Modules of Apache 2 provide
new elements for the conceptual architecture:

Worker MPM: Again, a Master Server controls the num-
ber of Child Servers, depending on the current server
load. Each Child Server process is a composition of
one listener thread, a job queue and a definite number

master
 clean-up

clean-up

master / restart initialization

First-time
initialization

Init Memory

detach process

read
configuration

proclaim new generation,
read configuration

init scoreboard

startup child servers &
register in scoreboard

wait for child's
death or time-out

adjust number of
idle child server

kill idle child
server

kill all child
server

child server
initialization

killed
or new

generation

graceful restart

shutdown or restart graceful restart

shutdown

free resources child server
clean-up

Master Server Child Servers

restart
loop

master
server loop

request-response loop

create child server
processes

wait for request

process request
update scoreboard

wait for connection
request

close connection
update scoreboard

timeout

keep-alive loop

Figure 4. Overall behavior of the Apache HTTP server (petri net).

of worker threads — see figure 5. The listener waits for
requests and puts them into a job queue. A job contains
the socket ID for the TCP connection. A worker waits
to get a job from the queue and then reads and pro-
cesses the request. The exit flag is used for the graceful
restart.

WinNT MPM: The server structure resembles the Worker
MPM with an important difference: There is only one
Child Server process, so the Master Server process just
monitors this Child Server process and restarts it if it
dies. The Child Server process contains a controller
thread, a listener thread for each server port and a def-
inite number of worker threads — similar to figure 5.

4. Conclusion

Domain knowledge is the most important prerequisite
for a good conceptual architecture model. Although all stu-
dents use the World Wide Web regularly, they needed half
of the time to understand the details of the protocols and
procedures and to make the necessary abstractions.

After that, the students could quickly understand the fea-
tures of Apache and managed to configure and work with
it, because they could use the domain knowledge and the
model of the first part of the seminar. The conceptual archi-
tecture model of Apache was developed and refined with the
aid of the authors. Even after the analysis, there were still
many white areas on the map: For example, it is not docu-
mented well how to process new configuration directives of
your own extension module for Apache. This could only be
clarified after looking at the implementation of Apache5.

Only the last third of the seminar was dedicated to the
implementation of Apache. Understanding the modular de-
sign of Apache helped reducing the code for the analysis.
The students learned a lot about the problems and the im-
plementation of a multitasking server.

The high–level FMC compositional structure and behav-
ior diagrams presented in this paper have proven to be use-
ful to introduce the conceptual architecture of Apache to
a broad audience. Their creation took time, because they
had to go through many improvement and abstraction cy-

5The study of the configuration engine of Apache was done by Oliver
Schmidt at the HPI. A publication will be available at [4].

Child Server Process

scoreboard

TCP/IP Communication Service

listener

Files

worker N

worker 2

worker 1

job
queueadd

job remove
job

wait for &
accept connection

configurationexit flag

Figure 5. Apache 2: Listener and Worker
threads inside a Child Server (block diagram)

cles until they were satisfactory. The improvements often
concerned layout issues because these can be crucial for
communicating software architecture in an efficient way.

Without a conceptual architecture model and the abstrac-
tions needed to create it, it is not possible to understand
the implementation of bigger systems in a reasonable time.
Finding these abstractions is supported by the FMC termi-
nology and requires practice. Therefore we offer the semi-
nar in 2002 with more emphasis on modeling and abstrac-
tion.

References

[1] T. Apache Software Foundation. Apache http server project.
[Online] http://httpd.apache.org.

[2] R. S. Engelschall.Apache Desktop Reference. Addison–
Wesley, 2000.

[3] Fielding et al. Hypertext transfer protocol — http/1.1 rfc
2616, 1999.

[4] B. Gröne, A. Knöpfel, and R. Kugel. The apache modelling
project. [Online] http://www.hpi.uni-potsdam.de/apache,
2002.

[5] C. Hofmeister, R. Nord, and D. Soni.Applied Software Ar-
chitecture. Addison–Wesley, 1999.

[6] F. Keller, P. Tabeling, et al. Improving knowledge transfer on
architectural level: Concepts and notations. In(to appear)
The 2002 International Conference on Software Engineer-
ing Research and Practice, 2002.

[7] L. Stein and D. MacEachern.Writing Apache Modules with
Perl and C. O’Reilly, 1999.

[8] D. van Heesch. Doxygen – a documentation system for c++,
java, idl and c. [Online] http://www.doxygen.org, 2002.

[9] S. Wendt. Einführung in die begriffswelt allgemeiner netz-
systeme.Regelungstechnik, 30(1), 1982.

[10] S. Wendt.Nichtphysikalische Grundlagen der Informations-
technik. Springer Verlag Heidelberg, 2nd edition, 1991.

